Massive endocytosis triggered by surface membrane palmitoylation under mitochondrial control in BHK fibroblasts

نویسندگان

  • Donald W Hilgemann
  • Michael Fine
  • Maurine E Linder
  • Benjamin C Jennings
  • Mei-Jung Lin
چکیده

Large Ca transients cause massive endocytosis (MEND) in BHK fibroblasts by nonclassical mechanisms. We present evidence that MEND depends on mitochondrial permeability transition pore (PTP) openings, followed by coenzyme A (CoA) release, acyl CoA synthesis, and membrane protein palmitoylation. MEND is blocked by inhibiting mitochondrial Ca uptake or PTP openings, depleting fatty acids, blocking acyl CoA synthesis, metabolizing CoA, or inhibiting palmitoylation. It is triggered by depolarizing mitochondria or promoting PTP openings. After mitochondrial MEND blockade, MEND is restored by cytoplasmic acyl CoA or CoA. MEND is blocked by siRNA knockdown of the plasmalemmal acyl transferase, DHHC5. When acyl CoA is abundant, transient H2O2 oxidative stress or PKC activation initiates MEND, but the immediate presence of H2O2 prevents MEND. The PTP inhibitor, NIM811, significantly increases plasmalemma in normally growing cells. Thus, the MEND pathway may contribute to constitutive as well as pathological plasmalemma turnover in dependence on mitochondrial stress signaling. DOI: http://dx.doi.org/10.7554/eLife.01293.001.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Massive palmitoylation-dependent endocytosis during reoxygenation of anoxic cardiac muscle

In fibroblasts, large Ca transients activate massive endocytosis (MEND) that involves membrane protein palmitoylation subsequent to mitochondrial permeability transition pore (PTP) openings. Here, we characterize this pathway in cardiac muscle. Myocytes with increased expression of the acyl transferase, DHHC5, have decreased Na/K pump activity. In DHHC5-deficient myocytes, Na/K pump activity an...

متن کامل

Massive endocytosis driven by lipidic forces originating in the outer plasmalemmal monolayer: a new approach to membrane recycling and lipid domains

The roles that lipids play in endocytosis are the subject of debate. Using electrical and imaging methods, we describe massive endocytosis (MEND) in baby hamster kidney (BHK) and HEK293 cells when the outer plasma membrane monolayer is perturbed by the nonionic detergents, Triton X-100 (TX100) and NP-40. Some alkane detergents, the amphipathic drugs, edelfosine and tamoxifen, and the phospholip...

متن کامل

Recycling of MUC1 is dependent on its palmitoylation.

MUC1 is a mucin-like transmembrane protein expressed on the apical surface of epithelia, where it protects the cell surface. The cytoplasmic domain has numerous sites for phosphorylation and docking of proteins involved in signal transduction. In a previous study, we showed that the cytoplasmic YXXphi motif Y20HPM and the tyrosine-phosphorylated Y60TNP motif are required for MUC1 clathrin-media...

متن کامل

Lysosomal Oxidative Stress Cytotoxicity Induced By Para-phenylenediamine Redox Cycling In Hepatocytes

It has already been reported that muscle necrosis induced by various phenylenediamine derivatives are correlated with their autoxidation rate. Now in a more detailed investigation of the cytotoxic mechanism using a model system of isolated hepatocytes and ring-methylated structural isomer durenediamine (DD) we have shown that under aerobic conditions, phenylenediamine induced cytotoxicity and R...

متن کامل

Lysosomal Oxidative Stress Cytotoxicity Induced By Para-phenylenediamine Redox Cycling In Hepatocytes

It has already been reported that muscle necrosis induced by various phenylenediamine derivatives are correlated with their autoxidation rate. Now in a more detailed investigation of the cytotoxic mechanism using a model system of isolated hepatocytes and ring-methylated structural isomer durenediamine (DD) we have shown that under aerobic conditions, phenylenediamine induced cytotoxicity and R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2013